Brain acidosis in experimental pneumococcal meningitis.
نویسندگان
چکیده
Purulent meningitis is a serious disease that often has a lethal outcome or gives lasting complications due to brain damage. The processes causing brain dysfunction or damage are still not uncovered nor are the reasons for the characteristic increase of CSF lactate, or the decrease of glucose levels and of pH. We studied rabbits with experimentally induced purulent meningitis (Streptococcus pneumoniae). Ten hours after the inoculation into cisterna magna the rabbits developed symptoms of meningitis, with stiffness of the neck, tachypnea, and fever. The CSF level of lactate and the number of leukocytes were significantly increased and the glucose level was decreased. Brain interstitial pH, as measured by ion selective microelectrodes, was significantly decreased from the normal level of 7.4 to 6.9. The levels of energy metabolites in brain cortex, including glucose, were not different between controls and infected animals, and the lactate level was not elevated more than could have been explained by passive diffusion from the CSF. This shows that the brain tissue is not the source of CSF lactate nor the sink for glucose in CSF. The marked acidification of brain interstitial space and CSF demonstrates that purulent meningitis causes a significant disturbance of brain ion homeostasis that could be, at least in part, responsible for the brain dysfunction. We suggest that activated leukocytes consume CSF glucose and produce lactic acid and secrete protons, which causes the CSF and interstitial acidosis.
منابع مشابه
A novel nonpsychotropic cannabinoid, HU-211, in the treatment of experimental pneumococcal meningitis.
Typical features of pneumococcal meningitis have been demonstrated in rats inoculated with Streptococcus pneumoniae. HU-211, a novel noncompetitive N-methyl-D-aspartate antagonist recently demonstrated to inhibit tumor necrosis factor-alpha production under various conditions, improves recovery in some experimental models of brain injury. The present study tested the efficacy of HU-211 in combi...
متن کاملBacteremia causes hippocampal apoptosis in experimental pneumococcal meningitis
BACKGROUND Bacteremia and systemic complications both play important roles in brain pathophysiological alterations and the outcome of pneumococcal meningitis. Their individual contributions to the development of brain damage, however, still remain to be defined. METHODS Using an adult rat pneumococcal meningitis model, the impact of bacteremia accompanying meningitis on the development of hip...
متن کاملEffect of hydration status on cerebral blood flow and cerebrospinal fluid lactic acidosis in rabbits with experimental meningitis.
The effects of hydration status on cerebral blood flow (CBF) and development of cerebrospinal fluid (CSF) lactic acidosis were evaluated in rabbits with experimental pneumococcal meningitis. As loss of cerebrovascular autoregulation has been previously demonstrated in this model, we reasoned that compromise of intravascular volume might severely affect cerebral perfusion. Furthermore, as acute ...
متن کاملAttenuation of cerebrospinal fluid inflammation by the nonbacteriolytic antibiotic daptomycin versus that by ceftriaxone in experimental pneumococcal meningitis.
Antibiotic-induced bacteriolysis exacerbates inflammation and brain damage in bacterial meningitis. Here the quality and temporal kinetics of cerebrospinal fluid (CSF) inflammation were assessed in an infant rat pneumococcal meningitis model for the nonbacteriolytic antibiotic daptomycin versus ceftriaxone. Daptomycin led to lower CSF concentrations of interleukin 1beta (IL-1beta), IL-10, IL-18...
متن کاملB7-H3 Augments Inflammatory Responses and Exacerbates Brain Damage via Amplifying NF-κB p65 and MAPK p38 Activation during Experimental Pneumococcal Meningitis
The costimulatory protein B7-H3 has been shown to play a contributory role in the development and progression of experimental pneumococcal meningitis by augmentation of the innate immunity-associated inflammatory response via a TLR2-dependent manner. This study aimed to clarify the component(s) of TLR2-mediated signal transduction pathways responsible for B7-H3-augmented inflammatory response a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism
دوره 9 3 شماره
صفحات -
تاریخ انتشار 1989